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ABSTRACT

This paper summarizes the Explicit Algebraic Stress Model in K�� form 
EASM�ko� and in
K�� form 
EASM�ke� in the Reynolds�averaged Navier�Stokes code CFL�D� These models have
been actively used over the last several years in CFL�D� and have undergone some minor
modi�cations during that time� Details of the equations and method for coding the latest
versions of the models are given� and numerous validation cases are presented� This paper
serves as a validation archive for these models�
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� INTRODUCTION

A turbulence model must be employed in conjunction with the Reynolds�averaged Navier�
Stokes 
RANS� equations in order to close the equations� Over the last �� years� many di�erent
turbulence models have been developed for use with RANS� Because there are so many to choose
from� it is sometimes di�cult for a CFD user to decide which model to use for a given �ow
situation�

It is therefore very important that new 
as well as existing� models be thoroughly validated
in all the CFD codes into which they are implemented� This validation process should consist
of applications to a suite of as many test cases as possible� which� taken together� thoroughly
exercise the capabilities of the turbulence model�

Most turbulence models for use with RANS today are linear eddy viscosity models� which
assume a Boussinesq relationship between the turbulent stresses and mean strain rate tensor
through the use of an isotropic eddy viscosity� Recently� however� nonlinear eddy viscosity
models have been gaining widespread attention� This class of models assumes a higher�order
tensor representation involving either powers of the mean velocity gradient or combinations of
the mean strain rate and rotation rate tensors�

One of the advantages of nonlinear eddy viscosity models over linear eddy viscosity models
is that nonlinear models can predict di�erences in the turbulent normal stresses� Although this
de�ciency in linear models is not generally considered important for most external aerodynamic
problems of interest� it has been shown to be crucial for capturing secondary motion in a corner
�ow� which is driven by the gradient of the turbulent normal stresses 
see Abdol�Hamid et
al������

Explicit algebraic stress models 
EASM� belong to the class of nonlinear eddy viscosity
models� However� unlike some nonlinear models which determine their expansion coe�cients
through calibration with experimental or numerical data� EASMs obtain their expansion coef�
�cients through their rigorous relationship with their �parent� full di�erential Reynolds stress
equations� See Gatski and Rumsey ��� for details�

The EASM models� when originally conceived ���� were solved by assuming a �xed 
equilib�
rium� value of P�� when determining the parameter g � 
C��� � P��� ����� This ��xed�g�
EASM model was subsequently improved ��� 	� 
� by allowing P�� to vary� It is only this
latter method� sometimes referred to as �variable�g� EASM� that is discussed in this report�
The ��xed�g� EASM method has also been coded into CFL�D� but it is generally no longer
recommended and will not be discussed� Other applications of EASM 
using variable�g� can be
found in Carlson ��� and Carlson et al�����

The purpose of this paper is primarily as a validation archive for the EASM�ko and EASM�ke
models as coded in CFL�D� Thus� engineers who attempt to code these turbulence models for
themselves in their own CFD codes can use this paper as a reference for the results they should
expect to get with these models� This paper is not intended to advocate EASM� or to point
out cases for which EASM yields improved 
or worse� results than more conventional models�
Therefore� no comparisons are presented between EASM and other models� That exercise is
left to the reader� Here� the two versions of EASM�ko and EASM�ke are compared only with
each other 
and with experiment or theory��

The next two sections describe the formulas for the EASM�ko and EASM�ke models� includ�
ing details regarding the numerical method employed to solve them in CFL�D� Following that�
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the models are applied to several test cases� Then� conclusions are drawn in the last section�

� OVERVIEW OF CFL�D

The computer code CFL�D ��� solves the three�dimensional� time�dependent� Reynolds averaged
compressible Navier�Stokes equations with an upwind �nite�volume formulation 
it can also be
exercised in two�dimensional mode of operation for ��D cases�� It can solve �ows over multiple�
zone grids that are connected in a one�to�one� patched� or overset manner� and can employ
grid sequencing� multigrid� and local time stepping when accelerating convergence to steady
state� Upwind�biased spatial di�erencing is used for the inviscid terms� and �ux limiting is used
to obtain smooth solutions in the vicinity of shock waves� when present� Viscous terms are
centrally di�erenced� and cross�di�usion terms are neglected� For very low Mach number �ows�
preconditioning ���� is used to insure convergence and accuracy of the solutions�

The CFL�D code is advanced in time with an implicit approximate factorization method�
The implicit derivatives are written as spatially �rst�order accurate� which results in block
tridiagonal inversions for each sweep� However� for solutions that utilize Roe �ux�di�erence
splitting ����� the block tridiagonal inversions are further simpli�ed using a diagonal algorithm
with a spectral radius scaling of the viscous terms� All solutions in this paper use Roe�

Following Wilcox ����� Reynolds averaging can be used with the Navier�Stokes equations in
Favre variables ���� to account for turbulent �uctuations� The resulting equations of motion
can be written using the summation convention as follows� The full Navier�Stokes equations are
shown here� but in CFL�D they are solved using the thin�layer approximation in pre�selected
coordinate direction
s�� The equations are given here in terms of dimensional quantities� Al�
though not shown� the equations are subsequently nondimensionalized and solved in generalized
coordinates 
see Krist et al������
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where 	�t is the turbulent eddy viscosity computed by a linear turbulence model� For the
nonlinear eddy�viscosity models EASM�ko and EASM�ke�
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where the terms a�� a�� and a� are de�ned in the next section�

In CFL�D� the kinetic energy of the �uctuating turbulent �eld K is ignored in the de�nition
of p and E in equations 
�� and 
	�� Furthermore� for all linear eddy�viscosity models� the term
involving K is ignored in the de�nition of �Tij in equation 
���� and the �j term in the energy
equation 
�� is assumed to be zero� These approximations and assumptions have relatively little
e�ect for most �ows at low or transonic Mach numbers� but could have signi�cant impact for
hypersonic �ows� From a coding perspective� for linear eddy�viscosity models� the end result is
that the laminar Navier�Stokes equations are identical to the turbulent Navier�Stokes equations
with the exception that 	 is replaced by 	�	�t and 	�Pr is replaced by 	�Pr�	�t �Prt 
in these
equations Pr is taken as ���� and Prt is taken as �����

For the nonlinear models� the term involving K is included in the de�nition of �Tij in equation

�	�� and the �j term in the energy equation 
�� is modeled via equation 
��� However� K is
still ignored in the de�nition of p and E in equations 
�� and 
	�� Therefore� like the linear
turbulence models� strictly speaking the nonlinear turbulence models are not applicable for
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hypersonic �ows either� as coded in CFL�D� From a coding perspective� the nonlinear models
are similar to the linear models except that additional terms beside 	�t and 	�t �Prt must be
added to the right�hand sides of the momentum and energy equations 
�� and 
�� when going
from laminar to turbulent Navier�Stokes�

All the turbulence models in CFL�D� including EASM�ko and EASM�ke� are solved uncou�
pled from the mean �ow equations using implicit approximate factorization� Their advective
terms are solved using �rst�order upwind di�erencing� Details for obtaining the 	�t term for the
EASM�ko and EASM�ke models are given in the next section�

� THE EASM EXPLICIT ALGEBRAIC STRESS MODELS

For background and summary on the derivation of EASM� see Gatski and Speziale ���� Jongen
and Gatski ����� Rumsey et al��
�� and Rumsey and Gatski ��	�� The following section bypasses
the derivation and jumps directly to the �nal resulting equations for the EASM�ko and EASM�ke
models� and also outlines the method of solution in CFL�D�

The kinematic eddy viscosity 	�t is given by


�t � 	�t �� � C�

�K� � �K��� 
�
�

with � � ��� for EASM�ko and � � K�� for EASM�ke� Thus� ���� is equivalent to �C�

��
which is variable 
as opposed to constant as in most linear two�equation models�� The nominal
level for C�

� in a zero�pressure�gradient log layer is approximately ����� The value of ���� is
obtained from the solution to the following cubic equation at each point in the �ow �eld�
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The correct root to choose from this equation is the root with the lowest real part ��
��
Also� the degenerate case when �� � � must be avoided� See Rumsey and Gatski ��	� for
further details� In the current implementation� the resulting C�
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���	�� Other parameters are given by
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The preceding implementation is exactly the same for EASM�ko or EASM�ke� The two
methods di�er in the two equations solved 
K�� vs� K���� For EASM�ko� the explicit tensor
representation for �ij is coupled with the following K�� two�equation model�
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p
C�
� � ���� � � �
��� � � �
	�� � � �
��� and C� � �
���	� Note that

for ��D incompressible �ows� P � �
�t �
� is exact� In CFL�D� the user has the option of using

the exact or the approximate P term� We have found there to be very little di�erence for a
wide variety of subsonic and transonic ��D aerodynamic�type �ows� and use of the approximate
term is more robust during transient stages of the computation in some cases� Except where
otherwise noted� all the results in this paper were obtained using the approximate term�

Also� it should be noted that the values of �K and � in this model are di�erent than reported
in Rumsey and Gatski ��	�� They were changed recently to improve the model�s capability for
jet�type �ows 
see Georgiadis et al������� The change was found to have relatively small impact
for wall�bounded �ows in general� In the current implementation� P in the K�equation is limited
to be less than �� times the destruction term f��K�� The function f�� � taken from fromWilcox
����� is given by
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where the C�
� term in the formula for �k is necessary because � in the current model does not

�absorb� C� as in Wilcox�s model�

	



For the EASM�ke two�equation model�
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where P is given by equation 
��� and is limited in the K�equation to be less than �� times
the destruction term �� Also� f� � �� � exp
�ReK���
���� ReK � K���d�
� �K � �
�� �� �
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p
C�
C���C����� C�� � �
��� C�� � �
��� C� � �
���	� and d is the distance to the nearest

wall� Additional wall damping functions 
such as f�� to achieve expected asymptotic behavior of
the turbulence quantities very near the wall� are not employed in the current EASM�ke model�
Note that in equations 
�
� and 
���� the di�usion terms are modeled using an equilibrium eddy
viscosity 
t � C�K

���� where the constant C� � �
���	 for this model� This is di�erent than in
the EASM�ko model� which uses the actual eddy viscosity 
�t 
with variable C�

�� in its modeled
di�usion terms� The di�usion terms for both EASM�ko and EASM�ke are approximate models
in any case� see� for example� Warsi �����

In CFL�D� the turbulence equations are nondimensionalized by the same reference variables
as the Navier�Stokes equations� aref � �ref� 	ref � and Lref � where a is speed of sound� � is density� 	
is molecular viscosity� and L is length scale corresponding to unit one of the computational grid�
Thus� denoting nondimensional variables with a tilde� �K � K�
a�

ref
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	ref���
�refa

�

ref
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and �� � 
	ref���
�refa
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ref
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The turbulent boundary conditions applied at solid walls areKw � �� �w � �
w
�
p
K��n��w�

and �w � ��


w����
�n���� where �n is the distance to the �rst cell center away from the
wall� The boundary condition for �w is from Menter ����� This boundary condition simulates
the analytical behavior of � near solid walls without the need for specifying the solution at
interior points� At far�eld in�ow boundaries� the following nondimensional values are assigned
as freestream reference values in CFL�D� �K � � � ���� and �� � � � ���� for EASM�ko�
and �K � � � ���� and �� � � � ����� for EASM�ke� The end result for both models is that
nondimensional �	t � 	t�	ref � �
��� at far�eld in�ow boundaries 
based on C�

� � �
��� which is
only approximate because C�

� is variable in these models�� At out�ow boundaries� the turbulent
quantities are extrapolated from the interior of the computational domain�

Some additional details concerning the method for solving the two�equation turbulence
models are now given� First� the following is an example showing the transformation from
Cartesian coordinates to generalized coordinates�
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and �� �� and � are the three generalized coordinate directions� When transforming into gener�
alized coordinates� cross�derivative terms are neglected in the di�usion�type terms that appear
in the turbulence equations�

The two turbulence equations are solved decoupled using implicit approximate factorization�
Each sweep requires the solution of a scalar tridiagonal matrix� The production terms are
treated explicitly� lagged in time� while the destruction and di�usion terms are treated implicitly�
It should be noted here that in CFL�D� the K� �� and � terms are not allowed to go negative
during the solution procedure� If the update yields a negative result� it is instead limited to
a very small positive number� and a counter keeps track of the number of times this occurs
in the �ow�eld as an indicator of non�convergence in the solution� Furthermore� ���� ���� and
��� are limited to be positive 
this is the realizability constraint�� In EASM�ke� ���� and
R����� are each limited to be less than ���� in magnitude� In both EASM�ko and EASM�ke�
where � or � appears in the denominator of equation 
�	� 
i�e�� in the nonlinear terms added
to the Navier�Stokes equations�� these values are limited to be greater than or equal to their
freestream reference levels in order to avoid dividing by unrealistically small numbers during
the convergence process�

� VALIDATION TEST CASES

This section contains a detailed account of a series of validation test cases to which the EASM�
ko and EASM�ke models have been applied� The �rst � cases are also �standard� CFL�D test
cases� described and available on the CFL�D website ����� 
In some instances� the case on the
website has been set up for a di�erent turbulence model other than EASM�ko or EASM�ke�
and some adjustments to CFL number are necessary in the provided input �le in order to get
the cases to run�� The last � cases are not currently available on the website� For the �rst case

�at plate�� grid sensitivity studies are described in this report� All of the subsequent cases use
only a single grid size� with no parametric variations performed� However� many of the grids
used in these validations were found to be �ne enough to capture the �ow features of interest
in previous grid sensitivity studies performed by the authors or by other researchers� In each
case� the boundary conditions are described in detail� unless otherwise noted� at all solid walls
a no�slip� adiabatic wall boundary condition is used� At these walls� the turbulence boundary
conditions are those described in section �� For the mean �ow variables� velocity components
at the wall are set to zero� �Tw��n � �� and pw is determined using linear extrapolation from
the interior of the domain� Note that the EASM�ke model sometimes has di�culty establishing
turbulence when started from freestream or weak turbulence initial conditions� Therefore� for
all the results in this paper� EASM�ke was initialized from the corresponding EASM�ko solution�

��� Flat Plate

The �at plate case 
zero pressure gradient� was performed at M � �
�� Re � 
 � ��� per unit
length of the grid� The default grid size for this case was 
	 � ��� Fig� � shows a picture of
the grid� The viscous� adiabatic wall was unit one in length� Symmetry boundary conditions
were imposed on a region of length x � �
��� in front of the plate� Grid domain height
was approximately ���� minimum normal grid spacing at the wall was � � ����� and the grid
was stretched at a rate of ���� until the vertical spacing �rst exceeded the horizontal spacing�
Horizontal grid spacing was constant at �x � �
��������
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At the in�ow boundary� the total pressure and total temperature were set via pT�pref �
�
����� and TT�Tref � �
����� and a ��D characteristic boundary condition was used to deter�
mine the other �ow variables ���� At the out�ow boundary� linear extrapolation was employed�
At the top boundary� a far�eld Riemann�invariant ��D characteristic boundary condition was
employed�

Figure �� Flat plate grid� 
	� ���

Surface skin friction coe�cient results using EASM�ko are shown in Fig� � for a grid density
study� A total of four grids were used� each had 
	 points in the streamwise direction� and the
number of points in the normal direction was successively halved from ��� to �� to �� to �	�
Thus� the default grid size 

	���� was included as well as one level �ner and two levels coarser�
Also shown in the �gure are symbols giving three di�erent theoretical curves from White �����
indicative of the type of spread that might be expected from experimental data of a turbulent
�at plate boundary layer� As the grid is re�ned� the results approach the range de�ned by the
theoretical curves� Looking at one particular x�location on the plate 
x � �
���	�� and using
second�order Richardson extrapolation on the �nest two grids� one �nds that the 
	� ��� grid
yields a skin friction value ��	� in error from the result on an in�nitely�re�ned grid at this
location� The default 
	 � �� grid is ���� in error� the 
	� �� grid is ���� in error� and the

	� �	 grid is ���
� in error�

The same grid study was also conducted for EASM�ke� Results are shown in Fig� �� Unlike
EASM�ko� with EASM�ke the skin friction decreases with increasing grid density� In this case
the 
	���� grid yields a skin friction value ���� in error from the result on an in�nitely�re�ned
grid at x � �
���	� The default 
	� �� grid is ��
� in error� the 
	� �� grid is ���� in error�
and the 
	 � �	 grid is ���� in error� Notice that the in�nitely�re�ned skin friction levels
approached by EASM�ke are slightly lower than those using EASM�ko�
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Figure �� E�ect of grid size normal to the wall on surface skin friction� EASM�ko�

Figure �� E�ect of grid size normal to the wall on surface skin friction� EASM�ke�

�



Figs� � and 	 show the e�ect of varying the minimum normal spacing at the wall using
EASM�ko and EASM�ke� while keeping grid size constant 
at 
	����� The �standard� minimum
spacing of � � ���� corresponds with an average y� value for the �rst cell�center o� the wall
of approximately ���� The minimum normal spacing was decreased to �� ���� 
average y� of
����� as well as increased to �
�� ���� 
average y� of ��	�� 	� ���� 
average y� of ����� and
�����	 
average y� of ����� In each case the stretching rate was varied to keep the grid height
approximately ���� As the average y� level decreases� the skin friction increases for EASM�ko
and decreases for EASM�ke� Using the result at x � �
���	� the di�erence between the smallest
y� and the largest y� tested is approximately 	� for EASM�ko and ��
� for EASM�ke� The
di�erence between using y� of ���� and ��� is only ���� for EASM�ko and less than ���� for
EASM�ke�

A plot of u� vs� log
y�� is shown for the two models in Fig� 
 using the 
	� �� grid� along
with Spalding theory from White ����� Results agree well with the law�of�the�wall�

Figure �� E�ect of average minimum y� on surface skin friction� EASM�ko� 
	� �� grid�

��� Back Step

The back step case compares against experimental data from Driver and Seegmiller ����� In the
experiment� several di�erent upper wall angles were tested� but in the present computation� the
upper wall was straight 
� deg�� The test conditions were M � �
���� Re � ��	�� per unit step
height H � In the grid for this con�guration� the lower wall starts out at a height of ���� then
drops to a height of ��� at x�H � �� The upper wall is at a height of ���� The grid extends
from x�H � ��
� upstream to x�H � �	 downstream�
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Figure 	� E�ect of average minimum y� on surface skin friction� EASM�ke� 
	� �� grid�

Figure 
� Velocity pro�les for both models in wall variables at x � �
�� 
	� �� grid� y������
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The grid itself is made up of two zones� �	� 
	 and ���� ���� These two zones abut along
x � � in a patched�grid 
non ��to��� fashion� Interpolation is used in CFL�D at the patched
interface to provide communication between the zones� The minimum normal spacing at the
walls varies within the range of approximately ����
 ������ which yields an average y� value at
the �rst cell center o� the walls of between ��
 and ���� The only exception to this is the back
face of the step itself� which has a normal spacing of ���� The streamwise grid spacing varies�
It is clustered near the step� and stretched as it approaches the upstream and downstream
boundaries� Two pictures of the grid are given in Figs� � and ��

The lower wall� upper wall� and back of the step used viscous� adiabatic boundary conditions�
At the upstream boundary� the density� velocity� and turbulence quantities were set to closely
match experiment 
see Rumsey et al��
� for details concerning this procedure�� The pressure
at the in�ow was extrapolated from the interior of the domain� At the downstream boundary�
the pressure was set to p�pref � �
����� and all other quantities were extrapolated from the
interior of the domain�

Figure �� Backstep grid� �	� 
	 and ���� ����

Figure �� Close�up of the backstep grid near the interface between zones�
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Lower wall pressure coe�cient and skin friction coe�cient for both EASM�ko and EASM�ke
are given in Figs� � and ��� A series of velocity pro�les is given in Figs� ��� ��� and ��� and
turbulent shear stress is given in Figs� ��� �	� and �
�

Reattachment length in the experiment was approximately in the range of x � 
 � 

��
Using EASM�ko� the computed reattachment length was x � 

��� whereas for EASM�ke it was
x � 	
�
� Both of these are in very good agreement with the experiment� considering that many
turbulence models have been shown to seriously underpredict reattachment length by ��� or
more ����� The EASM�ko skin friction results agree extremely well with experiment in general�
but EASM�ke underpredicts the levels in the separated region and overpredicts the levels after
reattachment� This poorer prediction of EASM�ke is consistent with skin friction results that
others have found for this case using di�erent k�� models 
see� e�g�� Menter ������ Velocity
pro�les for both models are similar� Both do a reasonably good job in the separated region�
but then do not predict as rapid a recovery after reattachment as experiment� This too�slow
recovery from separation is a chronic problem with almost all RANS turbulence models in use
today ����� Turbulent shear stress is predicted well by both models up through x � �
	� but
then the peak shear is underpredicted 
and is also farther from the wall� through approximately
x � 	
	� Downstream of this� the levels and shapes again agree fairly well with experiment�

Figure �� Backstep surface pressure coe�cients�

��� Transonic Di�user

This case models the strong�shock di�user experiment of Sajben and Kroutil ����� Fig� �� shows
the ���	� grid� which was obtained from the NPARC Alliance Validation Archive website ��	��
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Figure ��� Backstep surface skin friction coe�cients�

Figure ��� Backstep velocity pro�les� set ��
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Figure ��� Backstep velocity pro�les� set ��

Figure ��� Backstep velocity pro�les� set ��
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Figure ��� Backstep turbulent shear stress pro�les� set ��

Figure �	� Backstep turbulent shear stress pro�les� set ��
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Figure �
� Backstep turbulent shear stress pro�les� set ��

This con�guration had an entrance to throat area ratio of ��� and an exit to throat area ratio
of ��	� This �ow is characterized by the ratio� R� of exit static to in�ow total pressure� For
the strong�shock case R is ����� In the strong shock case� there is separated �ow on the upper
wall downstream of the shock wave ��	�� The grid had a minimum spacing at the walls of
approximately ������� yielding an average minimum y� value at the �rst cell center o� the wall
of approximately ��	�

When computing this case in CFL�D� the lower and upper walls were modeled as viscous�
adiabatic walls� At the in�ow plane� the total pressure divided by reference pressure was �����
and total temperature divided by reference temperature was ������ At the out�ow plane� the
static pressure divided by reference pressure was ���
�� Reference conditions 
at the throat�
were� M���� and Re�������� per throat width� 
In the grid� the throat width was unit ���

Computed wall pressures are shown compared to experiment in Figs� �� and �� for the lower
and upper walls� respectively� There is a slight di�erence in predicted shock position� with
EASM�ko downstream of EASM�ke� but both models agree well with experiment in general�
Velocity pro�les at four x�locations are shown in Fig� ��� Both EASM�ko and EASM�ke yield
similar results in good agreement with experiment� Both models also correctly predict separated
�ow on the upper wall at the two stations x!H���

� and ��
��� although in both cases the
maximum reverse �ow velocity magnitude is lower than in the experiment�
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Figure ��� Transonic di�user grid� ��� 	��

Figure ��� Transonic di�user lower wall pressures�
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Figure ��� Transonic di�user upper wall pressures�

��� NACA ���� Airfoil

This case models the separated �ow over a NACA ���� airfoil� and compares with the exper�
iment of Coles and Wadcock ��
�� This �ow was modeled computationally using a freestream
Mach number of M � �
�� Reynolds number Re � �
	� � ��� based on chord� and angle of
attack of � � ��
���� This �ow separates on the rear part of the airfoil upper surface at these
conditions� Fig� �� shows a picture of the �	�� �� grid used� The grid had a minimum spacing
at the wall of �� ���	 chords� a far�eld extent of approximately �� � �� chords� and a total of
��� points on the airfoil surface� The average minimum y� value of the �rst cell center o� the
wall was less than � for this grid�

Surface pressure coe�cients are shown in Fig� �� and upper surface velocity pro�les are
shown in Fig� ��� Both turbulence models predict similar surface pressures� which are in good
agreement with experiment everywhere except near the upper surface trailing edge� For velocity
pro�les� EASM�ko yields results in excellent agreement with experiment� whereas EASM�ke
predicts velocity levels that are too low 
the pro�le has greater in�ection�� However� both
models predict separation at the same location of x�c � �
����

Part of the reason for the poorer prediction of EASM�ke may be due to the fact that the K��
formulation in general does not handle wall�bounded adverse pressure gradients well� because
of shortcomings in the � equation� See� for example� Rumsey and Gatski ��	�� Wilcox �����
and Rodi and Scheuerer ����� Rodi and Scheuerer concluded that the generation term of the
� equation has to be increased above its usual level� Fig� �� shows a plot of the predicted
velocities in wall variables as compared to Spalding theory at x�c � �
	 on the upper surface
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Figure ��� Transonic di�user velocity pro�les�
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of the NACA ���� airfoil� EASM�ke did not obtain the correct slope of the log layer in this
adverse pressure gradient part of the �ow� whereas EASM�ko did� This same problem was also
shown and discussed in Rumsey and Gatski ��	� and Nagano and Tagawa �����

Figure ��� NACA ���� grid� �	�� ���

��� Ejector Nozzle

The ejector nozzle case models a subsonic ��D jet �ow that entrains and mixes with a secondary
outer �ow� The experimental data are from Gilbert and Hill ����� See also Georgiadis et al������

This case has nozzle total pressure divided by atmospheric static pressure of ����� with
total temperature � 
�� R� The secondary �ow has a total pressure equal to atmospheric
and a temperature of 		� R� At the out�ow used by this grid� the static pressure divided
by the atmospheric static pressure was taken to be ������� However� in CFL�D� a reference
condition was chosen that corresponded with a non�zero Mach number� in this case it was
taken to be M������ which is the approximate Mach number at the secondary �ow inlet in
this grid� 
Corresponding Reynolds number was taken to be approximately ��
� million per
foot�� Using M����� and isentropic relations� total pressure divided by reference pressure is
������ and total temperature divided by reference temperature is ������� These numbers are
used as in�ow conditions for the secondary �ow� Also as a result of choosing this reference
condition� static pressure divided by reference pressure at the out�ow is ������� At the nozzle
inlet� total pressure divided by reference pressure is ��	��� and total temperature divided by
reference temperature is �������

The grid consists of three zones with the following dimensions� ��� �� for primary nozzle�
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Figure ��� Surface pressure coe�cient for NACA �����

�� � �� for secondary inlet� and ��� � ��� for downstream� The grid is shown in Fig� �	�
Minimum grid normal spacing at the walls yielded an average y� level of approximately ����

Fig� �
 shows velocity pro�les at four stations downstream using EASM�ko and EASM�
ke� Both models overpredict the centerline velocity at the upstream stations and somewhat
underpredict the jet width in general� but qualitatively the overall agreement is good 
it is
similar to results on the same grid using di�erent turbulence models and a di�erent code in
Georgiadis et al�������

��� Axisymmetric Bump

The axisymmetric bump case has served as a standard test case for transonic separated �ow for
many years� The experimental data are from Bachalo and Johnson ����� and have been used�
for example� to validate Menter�s widely�used SST turbulence model �����

In this case� a turbulent boundary layer develops in the axial direction over an axisymmetric
circular bump 
smoothed at its leading and trailing edges�� Wall e�ects in the experiment are
minimal because the body does not generate any lift� For the particular case studied here� the
Mach number is ����	 and Reynolds number based on the length of the bump is �


� ���� At
these conditions� there is a shock wave and the �ow separates on the rear part of the bump�
then reattaches a short distance downstream�

This case is run in ���D mode� in CFL�D on a grid with two planes separated by ��� degrees�
and with periodic boundary conditions used on each of the two circumferential planes� Fig� ��
shows a picture of one plane of the ���� ���� � grid� The grid had an approximate minimum
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Figure ��� Velocity pro�les for NACA �����
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Figure ��� Velocity pro�les in wall variables for upper surface of NACA ���� at x�c � �
	�

Figure �	� Ejector nozzle grid�
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Figure �
� Jet velocity pro�les for ejector nozzle�
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spacing at the wall of �
	 � ���	 chords� Its far�eld extent was ��� chords in front of the
bump leading edge� ��� chords downstream of the bump trailing edge� and ��� chords domain
height� There were �	 axial points on the bump part of the wall surface� The average minimum
y� value of the �rst cell center o� the wall was approximately ��� for this grid� Far�eld�type
boundary conditions were used on the upstream� downstream� and top faces of the grid�

Fig� �� shows surface pressure coe�cients on the body� Both EASM�ko and EASM�ke
capture the shock position very accurately� as well as the shape of the pressure variation down�
stream� EASM�ke predicts the shock location slightly further forward� Velocity pro�les and
turbulent shear stress pro�les at seven stations are shown in Figs� �� and ��� respectively� At
the station x�c � �

�� upstream of separation� velocity pro�les using EASM�ke agree with
the experimental data somewhat better than EASM�ko� but EASM�ko recovers better than
EASM�ke at the last three stations� downstream of reattachment� Both models yield excellent
velocity pro�le results in the separated region� Also� both models predict turbulent shear stress
pro�les in reasonable agreement with experiment� with EASM�ke tending to give slightly lower
peak levels in magnitude in the separated region�

In section �� the use of an approximate production term in the EASM�ko and EASM�ke
models was discussed� and it was asserted that use of the approximate term makes very little
di�erence for a wide variety of subsonic and transonic ��D aerodynamic�type �ows� In �g� ���
shear stress pro�les at two stations are shown using the two models with both the approximate
P term as well as its exact form� Results are nearly identical� Pressure coe�cients and velocity
pro�les 
not shown� are also nearly identical�

Figure ��� Axisymmetric bump grid� ���� ���� ��
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Figure ��� Surface pressure coe�cients for axisymmetric bump�

��� ONERA M� Wing

The ONERA M
 wing is a ��D case often used to validate codes and turbulence models� The
experimental data are from Schmitt and Charpin �����

The particular case studied here has a Mach number of ���� and Reynolds number based on
mean aerodynamic chord of ��
�� ���� The angle of attack is �
�
�� At these conditions� there
are two shock waves across the inboard part of the wing upper surface� which merge to form a
single shock wave at the outboard part of the wing� There is no signi�cant �ow separation for
this case�

The grid used for this case is a C�O type grid of size ���� 
	� ��� Part of the grid 
with
every other grid point removed� is shown in Fig� ��� The grid is scaled so that the chord of the
wing varies from ��
��� at the root to ������ at the tip� In these units� the Reynolds number
per unit length is ��


� ���� The grid extends to approximately �
�� unit lengths upstream�
��� unit lengths downstream� 
�� unit lengths high� and ��� unit lengths to the side� Symmetry
conditions are applied along the center plane� and far�eld conditions are applied at the far�eld
boundaries� There are ��	 streamwise points and �� spanwise points on the wing surface itself�
for a total of ����	 surface points�

The average minimum normal spacing at the wall is approximately 
 � ���� unit lengths�
which yields an average minimum y� value of the �rst cell center o� the wall of approximately
���� This minimum spacing is larger than one would usually want to use for a turbulent �ow
computation� Based on the �at plate results in section ���� such a large wall spacing can yield
skin friction levels that are more than 	� in error� However� it was still considered important
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Figure ��� Velocity pro�les for axisymmetric bump�
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Figure ��� Turbulent shear stress pro�les for axisymmetric bump�
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Figure ��� E�ect of approximate production term on turbulent shear stress pro�les for axisym�
metric bump�

to include this case as a part of this validation archive because it demonstrates the capabilities
of these models on a less�than�optimal grid 
which is not an uncommon occurrence in many
situations involving ��D con�gurations��

Fig� �� shows surface pressure coe�cients at six span stations for the two models� Both do
an excellent job capturing the pressure levels� including shock location�

��	 �
D Airfoil Wake

This test case investigates the near��eld development and decay of the ��D wake of an airfoil
at low Mach number� The experimental data are from Nakayama �����

The case studied here uses the �Model A� airfoil� which is a ��� thick conventional airfoil�
It is computed at a Mach number of ��� and Reynolds number based on chord of �
� � ���


the chordlength is �� inches�� The angle of attack is ��� At these conditions� there is no �ow
separation on the airfoil�

The grid used for this case is a C�grid� but it is divided into two zones� The �rst zone is
�	� � �� and consists of the part of the C�grid containing points on the airfoil surface 
thus�
there are �	� points on the airfoil surface�� The second zone is �	����� and consists of the part
of the C�grid in the wake� with the top and bottom halves put together� The grid is shown in
Fig� ��� The grid extent is approximately �� chords� and the average minimum normal spacing
at the wall is approximately � � ���	 chords� which yields an average minimum y� value of
the �rst cell center o� the wall of approximately ��	� In the wake� the minimum grid spacing
occurs along the wake cut� it starts out with the same minimum spacing as at the airfoil� then
spreads further downstream� For example� at x�c � �
�� the minimum normal spacing on the
centerline is approximately � � ���� chords� At that station there are approximately �� grid
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Figure ��� Schematic of ONERA M
 grid� ���� 
	� �� 
every other grid point shown��

points between y � �� and � inches 
y�c � ��
���� and �
������

Fig� �	 shows wake velocity pro�les at seven streamwise stations for the two models� The
EASM�ke has a slightly deeper maximum wake de�cit than EASM�ko at stations downstream of
x�c � �
�� in better agreement with experiment� but EASM�ko yields a slightly better spreading
rate in this case� Both models predict the wake position to be somewhat too low compared to
experiment at the last two stations�

Fig� �
 shows wake turbulent shear stress pro�les� Overall� both models agree well with
experiment� The EASM�ke predicts higher peak levels than EASM�ko at the �rst two stations�
then predicts slightly lower levels downstream� Both models underpredict the peak levels seen
in the experiment at most of the stations downstream of x�c � �
��

��� Curved Duct in Zero Pressure Gradient

The curved duct test case was the subject of an extensive study in Rumsey et al���	� related
to curvature e�ects� and included the application of curvature corrections both to EASM�ke as
well as to a linear one�equation model� However� the subject of the present paper is solely a
validation for the �standard� forms of EASM�ko and EASM�ke� so curvature�corrected results
are not presented here� 
Nonetheless� it was found in Rumsey et al� that the �standard� form of
EASM performs reasonably well for this case because EASM still retains some of the invariance
properties of the full di�erential stress model� The more exact curvature�corrected version
yielded only modest improvements�� The experimental data for this case are from So and
Mellor ��
��
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Figure ��� Surface pressure coe�cients for ONERA M
�
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Figure ��� Nakayama model A grid� �	�� �� and �	�� ����

This case is an internal �ow with inner�wall convex curvature� The outer wall is shaped
to yield approximately a zero streamwise pressure gradient along the inner wall in the region
of interest� The Mach number at the inlet is ���
�� and the Reynolds number is taken to be
�

���� ��� per inch�

The grid used for this case is ��� � ��� shown in Fig� ��� In this �gure 
and in those to
follow�� the coordinate s refers to distance measured along the inner wall� with s � �� in� as
the location of the inlet to the computational grid� A grid study was performed in Rumsey et
al���	�� where it was concluded that this grid size is adequate� Slip�wall boundary conditions
were applied at the outer wall in the CFD simulation� This boundary condition allowed the
simulation to be run without the complication of having to contend with tangential air or bleed
boundary conditions� The inner wall boundary condition was no�slip� adiabatic wall� The
minimum normal spacing at the lower wall was ������	 in�� which yields an average minimum
y� value of the �rst cell center o� the wall of less than ��	� The out�ow boundary condition
set pressure at p�pref � �
� 
where �ref� refers to inlet conditions�� and extrapolated all other
quantities� At the upstream boundary� the density� velocity� and turbulence quantities were set
to closely match experiment 
see Rumsey et al��
� for details concerning this procedure�� The
pressure at the in�ow was extrapolated from the interior of the domain�

Fig� �� shows surface skin friction coe�cient along the inner wall� Both EASM�ko and
EASM�ke give reasonable agreement with experiment� Velocity pro�les 
referenced to inlet
conditions and local boundary layer thickness� are shown in Fig� ��� These are predicted in
good agreement with experiment� Turbulence quantities are given in Figs� ��� ��� and ��� Note
that all turbulent shear and normal stresses are in the local body!normal coordinate system�
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Figure �	� Wake velocity pro�les for Nakayama model A�
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Figure �
� Wake turbulent shear stress pro�les for Nakayama model A�
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Stresses in this frame are related to those in the Cartesian frame by the following relations�

u�v� �
�

�

v�v�c � u�u�c�sin
�"� � u�v�ccos
�"� 
���

u�u� � u�u�ccos
�" � v�v�csin

�"� u�v�csin
�"� 
���

v�v� � v�v�ccos
�"� u�u�csin

�"� u�v�csin
�"�� 
���

where the subscript c indicates Cartesian frame� and " is the angle that the body tangent
vector makes with the x�axis�

The u�u� turbulent normal stress levels are predicted somewhat too large in magnitude by
the EASM models in the curved region of the duct� but the turbulent shear stresses and the
v�v� normal stresses are predicted in good agreement with experiment�
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Figure ��� Curved duct grid� ���� ���

� CONCLUSIONS

In conclusion� this paper summarized the Explicit Algebraic Stress Model in K�� form 
EASM�
ko� and in K�� form 
EASM�ke� in the Reynolds�averaged Navier�Stokes code CFL�D� Details
of the equations and method for coding the latest versions of the models were given� and
numerous validation cases were presented� Except for the well�known problem of the standard
form of the � equation being ill�suited for wall�bounded adverse pressure gradient �ows� both
of these models were shown to yield good results for a wide variety of di�erent cases� These
cases included �ow �elds with shock waves� curvature� and signi�cant regions of separation�

�




Figure ��� Surface skin friction coe�cient� referenced to inlet conditions�

Figure ��� Velocity pro�les� referenced to inlet conditions�
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Figure ��� Turbulent shear stress pro�les� referenced to inlet conditions�

Figure ��� Turbulent u�u� normal stress pro�les� referenced to inlet conditions�
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Figure ��� Turbulent v�v� normal stress pro�les� referenced to inlet conditions�
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